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Spurious Behavior for a Numerical Scheme of Nonlinear
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In this paper we investigate finite difference approximations of
nondinear etliptic equations of the form Aa | Ao | o) Ointhree
ditmensions, whete A is o pasitive pacameter, We show the existence
of spurious solution branches, these solutions are spurious in the
sense that they are not solutions of the differential problem. We also
construct a modified problem describing the behaviour of numerical
solutions, so the finite difference method may be regarded as an
approximation of the modified problem, We present the results
of some numerical experiments ta substantiate our claims. <1995
Academiz Press, Inc.

1. INTRODUCTION

ln this paper we investigate the pecformance of the (inite
difference miethods when used 1o approximate the semilingar
partial difference problem

A+ Afun =0,
=1

in (2,

on &) (-0
with # > O inside {); {} is a bounded regular domain in RY
(N = 2) with boundiry 861 A is the Laplacian. A is a positive
parameter. and f{u) is a superlineal function with polynomial
grown. Let us recall that this type of problem arises in a variety
of situations, in the theory of nonlinear diffusion penerated
by nonlinear sourees, in quantim field theory and nechacical
statistics, in plasma physic (sce | 13] for more relerences).

In particular we shall consider the special nonlinear function

Fun=u+uw, p>1.

(1.2)
Problem (1.1}, (1.2) has been the center of many analytical
investigations. The analytical interest centres on the observation
that for p << p. = (N + 2)/(N — 2), p. is denominated by the
critical Sobolev exponent. the space Hl(€)) is compacily embed-
ded into the space L"*'(€1) {1 or 51, and using the classical
techniques based upon the calculus of variations, it is possible
to deduce that (1.1), (1.2) has positive solutions for all values
of A = 0[5, I5]. In contrast, when p > p, the embedding is
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not even continuous and these variational technigues break
down and the number of solutions depends on the values of A
and p 1 is qrite interesting remark thal the break down in the
variational 1cchnigoes as o means 1o sobving (L1, (1.2) is
associated with a real change of the bifurcation diagram for so-
lutions.

When () = B (unit ball), according to the results in Gidas,
Ni, and Niremmberg [6], all positive solutions of (1.1}, (1.2)
must be radially symmetric, and the problem reduces to the
following ordinary differential equation problem

N—1 : .
y+——u,+ Au+ =0, in0<r<l,
-

1.3
w0y = w(l)y =1, (1.3)

where u{r) is a positive function of the radial distance. More-
over, from the maximum principle, the maximum of 1 is attained
at the origin and it is known from Rabinowitz [19], that any
solution with p > p. must have A bounded away from zero.

For p > p. Budd and Norbury [4] have shown that for 2 <
N <10 there exists a value of A* such that (1.3) has a positive
solution when A* < A < Ay, where A, is the first eigenvalue
of the linearized problem, and there exists A” &(A¥, A;), where
{1.3) has an infinite number of positive solutions. We illustrate
these behaviours by giving four bifurcation diagrams where
the solutions were contineed in A using the soltware packige
AUTO. Figures 1 and 2 show the bifurcation diagrums for
N =13 p=dandp =7, respectively (here the critical exponent
is p. = 5), and we can see very clearly the dramatic change in
behaviour of the solutions. Figures 3 and 4 show the bifurcation
diagrams in supercritical cases for p = 7 and the dimensions
N = 5and N = |0, as it seems they are more vertical as the
dimension increases.

Murdoch and Budd [17] considered a convergence finile
element approximation for (1.3) with N = 3 and p > 5, they
showed the existence of apparently spurious solution branches.
These solutions are spurious in the sense that instead of Ae(A*,
A} as the maximum norm become unbounded (Fig. 2), as A
approaches zero.

Many papers on spurious solulions have appeared in recent
years. Brezzi, Ushik1, and Fujii [3] have found spurious invari-
ant cycles in the Euler’s method for a differential equation with
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a Hopf bifurcation. Griffiths and Mitchell [8], Sleeman et al
[23], Mitchell and Schoombre [21], Schoombre [22], and Stuart
[25] have found spurious periodic solutions in convergence
methods for nonlinear reaction—diffusion equations. Iserles
1121, (1990), Hairer, Iserles, and Sanz-Serna [10) Iserles,
Peplow, and Stuart [13], Griffiths, Sweby, and Yee [9], and
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Humphries [11] have studied the spurious solutions introduced
by time discretisations.

The theme of this paper is the investigation of finite difference
methods for (1.3) with spurious solution branches. The scheme
study is simple but may be modified to cater to other methods
with higher accuracy. The main idea is that {1.3) is not robust
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in the sense of Strikwerda [24], so the qualitative behaviour of
the solution is affected by the addition of lower order terms or
small changes in the coefficients. If the problem is not robust,
then the construction of different schemes of it will be more
difficult and our finite difference method may be regarded as
an approximation of the medified problem [7] that aims at
describing the behaviour of the numerical solutions of our
numerical experimentations. Roughly speaking, the problem is
structurally unstable and small perturbations may affect seri-
ously the qualitative behaviour of the solutions.

The layout of this paper is as follows. In Section 2 we
construct and study the explicit scheme for (1.3). In Section 3
we demonstrate that there exist spurious solutions and we also
provide numerical results to show that these spurious solutions
approach zero, and finally in Section 4 we construct the modi-
fied problem describing the behaviour of the numerical solu-
tions.

2. THE FINITE DIFFERENCE METHOD

In order to discretize (1.3), we subdivide [0, 1] into M + 1
equal subintervals,

1
M+

ri=ih, i=01,..M+1, h=

and with the abbreviation U; = u(r;) we replace the differential
quotients ., and u, by the second difference guotients

UEH B 2U:' + Uf—l
ur((ri) ZTS
U,' - U,‘_

u(r;) 2#-

The values U; satisfy the equations

1 N—1
P' (Us+1 - 2Us + UH) + W (Uf+| - Uj—l)

(2.1
AU+ UN=0,

i =1, .., M. With the boundary conditions Uy, = 0 and
U/, = U, from the boundary conditions of (1.3), the vectors
U=(U,.., U U= (U, .., U7, and the M X M matrix

3-N N-1
- +—
; ~2 1t
N-—1 N1
A -2 i
4
Al = . (2.2)
N-2
M rom =D
N1
TR -2

where the subscript N and the superscript 4 indicate that A%

depends on the mesh-size & and the dimention N, Eqs. (2.1)
are equivalent to

|

E-A?V'U+A-(U+U”)=0. 2.3

We first want to show some properties of the matrix Ak,
Lemma 2.1, For N =5,

(i The matrix Al is irreducibly diagonally dominant.
(iiy The matrix A% is nonsingular.

(iil) The real parts of eigenvalues of Al are negative.

Proof. (1) Simple calculations lead us to the result.

(ii) and (iii) are direct consequnces of (1) and Theorem 1.8
of Vargas [26, 23].

Remark. For higher dimension problems N = 6, the second
row of Al does not satisfy the diagonal dominance condition,
and conclusion (i) is uncorrect, however, the numerical evi-
dences show that (ii) and (iii} are true. So, in the opinion of
the author, the restriction N = 5 is only a technical condition
in order to demonstrate (ii) and (iii). '

Lemma 2.2, For N = 5, the matrix (A})™! is negative.

Proof. Let be (A}~ = (X, ..., Xy, where the vector x; =
(X¢, iy .or X ) 1S the ith column of the matrix (A%)~'. Then
Ab-x;=e, i=1,..,M, (2.4)
withe, = (0, .., 0, 1,0, .., b)T as the ith coordinate vector.
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For i = 1, because the first equation of (2.5) is

N+1
T'(‘xu +xu)=1,

it follows that x;; << xy,. From the second equation,

N N
0=(1 - 4 )‘XU _212_; + (] + 2 )-xl,

\

N-1
= (1 + "'4_) (X33 — X)),

we obtain
X xyy KXy
Therefore using M — 1, we obtain
X Sz <o g < X

and finally we use

N—1 N1
0= (l - M )-JCM_“ = 2xy, < (Al _W)IXM']

to obtain

X< xgy < Ly < xn < 0

A similar procedure shows that for any i > 1, the components
of x; satisfy

X=Xy = =y Sy <L <0, (2.3)

which concludes the proof.

We shall now derive the basic properties of the matrix —
(ALY ' by using the Perron—Frobeniu’s theorem [26].

THEOREM 2.3. For N =5
() —(AV! has a simple positive eigenvalue u! equal to
its spectral radius.

(1) To ! there corresponds an eigenvector ¢ > 0.

In order to study the convergence we consider the nonlinear
operator equation

¢ U) = #-A’,‘\,-U +A-(U+U», (2.6)

Assume that the solution possesses bounded derivatives; ob-
viously (2.1) approximates (1.3) with second-order accuracy,
but the approximation of the boundary condition is first order
only. Hence the numerical scheme (2.3) is consistent with the
differential problem {1.3) for N = 3 and its accurate order is one.
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To study the stability, we must be used the resulits of Lopez-
Marcos and Sanz-Serna [16] and Sanz-Serna [20]. where the
method is stable with thresholds depending on the discretization
parameter. Murdoch and Budd have applied this idea for Galer-
kin approximations to (3.1} and they have proved that the
spurious solutions lie outside the stability ball centred on the
zero solution. This theory would need an introduction to the
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discretization framework which exceeds the scope of this ar-
ticle.
The linearized discretization

(®,), () =%-A§‘V+/\-(l +p-UFNY-I (2.7

is locally Lipschitz continuous, and then the linearized stability
is equivalent to the stability with some suitable (2-dependent)
thresholds. The stability ball must act to separate the convergent
and the spurious solutions.

3. SPURIOUS SOLUTIONS

In this section we shall demonstrate that there exist spurious
solutions in (2.3) in the sense that A — 0 as they become
unbounded in the maximum norm.

Because there exists (A%}~ for N = 35, we can write (2.3) in
the form

U= ALL-U — A2 (Al) 'L, (3.1)
where L = —h% (A})"" and we now consider its branches of
solutions (A, U) of R X R with fixed 4 and allow A to vary.

It is well known from the standard bifurcation theory that
the curve of trivial solutions (A, 0), has a bifurcation point
when A is characteristic value of Lf; of odd multiplicity {18].
Here the characteristic values of Ly are A} = 1/h* u!, where
¥ 1s eigenvalue of —{A)™* and the smaller of them correspond-
ing to the bigger eigenvalue of —(AR) ™,
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agl = aAiliyl, (3.4

10.00
and subtracting (3.4) and (3.3) gives

8.00
0 = a(A — ALt — MEAD T ()P + ofe).  (3.5)

Since —ARMAD ‘af(¢])7 is positive, we immediately conclude

“ from (3.5) that A < A%,

B In order to demonstrate that A > 0 it will be sufficient for

: A F 0 because A > Q.

£.00 - Let’s suppose that A = Qel™}; from (3.1) U = 0 and then (0,

0)el and it would be a bifurcation point of (3.1), which is

a contradiction.

200 4 (i) Let be (A*, U*)el} such that U = 0 and U} > 0 for
all j # k. From the continuity of U with respect A, there must

exist A between A* and A, where U, = 0 and U, = 0 for all

J+k

If & = 1, the first equation of (3.1),

0.00 T T T T
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lambda
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FIG. 10. AUTO, mod h = . 5 (U= U) F AR+ AU =0,
implies U; = 0 and, similarly, U; = --- = U, = 0, which is
F= 10l (3.2) not possible.
If k& > 1, the kth equation is
The following theorem is a direct consequence of the classical
Sfurcati N—1 N-—-1
global bifurcation theory [18). (1 - _) Uy + (1 + T) Uy = 0,

2k
Tueorem 3.1. (i) The problem (3.1) has a branch of solu-
tions T such that (X, 0)eT't, and T} meets other bifurcation ;. for N = 5 the coefficients are positive. Then U,_, =

point (AL, 0) with j # 1 or is unbounded in the norm {A| + |[U]|. Us-r = 0 and 5o on, U = 0, which is again a contradiction.

ity As A — Al the first eigenvalue of LYy, U = a- ¢ + ) ) . ,
o(e) for & > 0 near zero. More(l:we.r, simple calculations lead us to the discrete maxi-

mum principle.

We shall now derive some properties of the branch of solu- "

tions I'f. These are contained in the following theorem. chRgLLARY 33 A A, Welt then Uy > U, > - >
M -
3 'k
TuEOREM 3.2. If (A, U)el'y then We now consider the first equation of algebraic system (3.1)
1) 0 < A<M
N+1

(i) U:>0,i=1, ..M U+ U+ AR (U + UR) = 0,
Proof. (1) 1f (A, U)elYis in the neighbourhood of (A%, 0),

(A, Uj satisfies (3.1), and U = wg! + o), then since by the corollary above

ag + ola) = ALL-(agh + ola)) — AR -(AD 7 (gt + o(c)¥; ME-( + U1 < N+1_ P
. 2 ’
therefore
then
ash = adliel — ARPANY  o? () + olw). (3.3) U, < VKN — 1, (3.6)

On the other hand, and we deduce the following important result.



100

10.00

8.00 A

§.00 +

u{0)

4.00 -

2.00 A

0.00 T T T T
.00 2.00 404 6.00 8.00

lambda

10.00

FIG. 11. AUTO, mod & = g.

TueoreM 3.4, The curve Tt tends to infinity as A — 0.

The conclusion of Theorem 3.4 is totally different from the
known behaviour of the solution described in Section 1 for
P = p.; here Uy — = = A — 0 and, consequently, it is quite
possible to obtain spurious solutions. Now we present numerical
results to substantiate our claims.

Figure 5 is the bifurcation diagram obtained for the algebraic
system (3.1) with N = 3, p = 4 (subcritical exponent) and
h = 15, using the software package PITCON. It is clear from
Figs. 1 and 5 that our finite difference method provided a good
approximation to the solution.

On the other hand, for the case p = 7 (supercriticat exponent)
and using again the package PITCON we obtain the bifurcation
diagrams for different mesh spacing A, they are shown in the
Figs. 6 through 9. From the bifurcation diagrams it is clear that
the numerical method has a branch of solutions such that A —
0 as |Ull. — o, which is different from the correct solution
and were advertised by Theorem 3.4. Moreover, as the mesh
spacing is reduced, more and more of the structure of the
bifurcation diagram is resolved,

4. THE MODIFIED PROBLEM

The modified equation technique for the analysis of a numeri-
cal scheme consists of the construction of a modified differential
equation such that the numerical solutions are more accurately
malched by the solutions of the modified equation than by the
solutions of the original differential equation being solved by
the numerical scheme. It should be observed that although it
is customary in the literature to talk about modified equations, it

F. VADILLO

is essential to consider modified problems, because the modified
equation should be supplemented by the necessary initial or
boundary conditions {7].

In order to constiuct a modified problem here, we observe
that (2.1) approximates the differential equation of (1.3) with
second-order accuracy, while Uy — U, = 0 is only a first-
order accurate replacement of boundary condition () = 0.
However, U, = U, is a second-order accurate replacement of
new boundary condition u,(0) + (4/2) u,,{0) = 0 which depends
on h and u,(0). To remove u,(0) we consider that because
ufr — u, as r — 0, consequently the differential equation is
N-u, + Alu + w?} = 0 as r — 0 and the problem

N
v+ Nl L Aw+en =0,

u(1y =0, 4.1

Ah
vA0) = 55 (0(0) + 0{(0)7) = 0,

appears to be a good candidate for the role of the modified
problem with second-order of correctness, and we claim that
the numerical solution U is a better approximation to v(r)
than u(r). Now we present numerical results to substantiate
this claim.

Figures 10 and 11 are the bifurcation diagrams of (4.1) using
again the software package AUTO for N = 3, p = 7, and
h = 18, h = gy, respectively. We can see branches of solutions
such that A — 0 as [p||l. — o, describing the behaviour of the
numerical solution (let us compare, for example, Fig. § with
Fig. 10 or 11); then we conclude that the modified problem
(4.1) provides a valid description of the numerical solutions.
And when we are trying to resolve (1.3), in fact, we are approxi-
mating the modified problem with important qualitative changes
in the behaviour of the branches of the solutions.
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